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PHM - A Programmable Hardware Monitor

Craig S. Anderson, Katherine J. Armstrong and Gaetano Borriello

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

/ f August 1989

Abstract v
This technical report describes a pr ject undertaken by hhe graduate students in CS 568,

Winter 1989, to design and implement programmable ardware monitor. The goal of this
project was to create a general purpose, hig ly progra able yet compact design for a hardware
monitor to be implemented with custom JOS V chips. The architecture is designed for

easy extensibility and allows the monitor to be customized for use in a wide variety of computer
systems, and to accommodate a broad range of applications. Although the project did not reach
fabrication, a great deal of the layout was completed and simulated.

I Introduction

The purpose of a hardware monitor is to detect and record hardware' vents in a computer system
for the purposes of performance evaluation. A simple, and much used, approach to performance
analysis is trace-driven simulation. Trace-driven simulation depends upon the collection of a trace
of all addresses generated during the execution of one or more computer programs. The major
problem of this approach is that a large amount of memory is required to store all the trace
information. Additionally, methods for collecting address traces are often expensive and intrusive;
the process of collecting the trace data may alter the behavior of the computer system while it is
being traced. I :z)(

Hardware monitoing is sometimes ugd as an alternative to full address tracing. A hardware
monitor is attached to a set of wires, e.g. an address bus, and the monitor's internal counters are
used to count the occurrences of events on those wires. Measuring cache performance by collecting
cache hit statistics is a common example of the use of hardware monitoring techniques. The values
of the monitor's counters are dumped to some storage medium, usually disk or tape, at regular
intervals. Software programs may be run later, using the data collected as input. Hardware moni-
toring has been an attractive alternative to full address tracing, both because of the substantially
reduced memory requirement. and because monitoring the hardware directly makes it possible to
collect information, such as operating system activity, that may be difficult or impossible to collect
in software. Unfortunately, this attractive filtering feature of hardware monitors has also been a
major limitation on their usefulness. Merely counting events does not provide a very full picture
of the activities of the computer system.
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PHM Programmable Hardware Monitor was designed to provide a more flexible alternative. It
is fully programmable and can be used efficiently both as a counter of events and as a mechanism
for collecting filtered event traces. It is designed to operate at the same speed as the machine
being monitored (up to 20 MHz), thus providing maximal throughput with minimal interference.
The monitor board will consist primarily of two types of custom CMOS VLSI chips: data filter
chips and data compression chips. The filter chip will be described in detail in this report. The
reader is referred to [Bunton 89] for information on the data compression chip. In addition to the
custom chips, there will be bus interface logic, which will allow the monitor to be programmed
from a PC keyboard, and disk control logic, which will handle the movement of data from the data
compression chips to disk storage.

The remainder of this paper is organized as follows. In section 2 we elaborate on the use
of hardware monitors and provide a characterization of the desired functionality of a hardware
monitor. Section 3 contains an overview of the architecture of PHM. The major features are
outlined and the motivation for certain decisions is discussed. In section 4, the layout of the filter
chip is detailed along with brief descriptions of the basic leaf cells. Finally, the current status of
the project and future work are discussed in section 5.

2 Features and Uses

Traditionally, hardware monitors have enjoyed only a limited usefulness. A hardware monitor's
primary advantage over address trace collection software lies in its ability to collect data relatively
non-intrusively and at a high rate of throughput. However, to achieve these goals, hardware
monitors generally impose a filtering requirement - they are only able to count events and save those
counts. Many potential applications for hardware monitors require further capabilities. Examples
of such applications include: collecting traces of some subset of possible addresses, recording cache
misses and run lengths of cache hits, monitoring the time between procedure calls and returns,
counting the number of instructions or amount of time between acquiring and releasing a lock. To
be general enough to handle such a broad range of applications, we would like a hardware monitor
to have the following capabilities:

* Detect the occurrence of any of a number of events on the set of wires being monitored;

e Count occurrences of those events and selectively output those counts;

e Collect a trace of the actual events of interest, rather than just a set of counts;

e Extract the values on ad or a subset of the monitored wires;

e Take time into account, e.g. record events which occur at some fixed interval of time apart
from each other, record the time between two events, or record a "timestamp" indicating the
time at which an event occurred;

0 "Remember" an event which occurred in the past, e.g. record only those occurrences of event

A that occurred n cycles before an occurrence of event B.
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We have incorporated all of these features into the PHM filter chip. In addition, the on-
board data compression chips, which use a fast new variation of the Lempel-Ziv algorithm, greatly
enhance the filtering capabilities of our hardware monitor and its ability to collect data at a very
high throughput rate. In the next section, the architecture of the filter chip, which lies at the heart
of our monitor design, will be detailed.

3 Architecture

3.1 Features

The data filter chip is composed of seven major functional elements: comparators, switches, event
recorders, internal counter/timers, external counters, ID code logic, and programming logic. In
addition to the data filter and data compression chips, a set of trace registers is included on the
monitor board. The loading and saving of data in the trace registers is controlled by the filter chip.
The filter chip takes as input a subset of the wires of interest. It monitors the signals on those
wires to determine when to perform a tracing function. Having a variable number of trace registers
located on the monitor board, rather than a fixed number internal to the filter chip, makes it possible
for PHM to use the signals seen on one set of wires as indicators of when to save the pattern on
a different set of wires. It also allows for collection of multiple data streams simultaneously. The
monitor board will also include a time-of-day counter and, optionally, a multiplexor, which is used
to select which of three data streams - monitored wires, filter chip counter values, and time-of-day
- are to be saved on any given cycle.

By far the major portion of the filter chip is occupied by the programmable comparators. Each
bit of each comparator may be separately programmed with a key and a mask. The key bits are
programmed with a pattern which, when seen on the monitored wires, will produce a comparator
match. Mask bits are added to allow the "don't care" condition to be specified for any bit. The
comparator cells were designed such that both the number and width of the comparators may be
easily extended, constrained only by the physical area of the chip and the target cycle time. Our
current design has 64 60-bit comparators. The number of comparators was determined primarily
by space considerations, while the width was dictated by the 50 ns target cycle time. The issues
will be discussed further in section 4.

The second most area-consumptive element of our design is a set of programmable switches.
The hardware realization for the switch cell is quite similar to that of a CAM (content-addressable
memory) cell. These switches are programmed to select the actions to take place when a comparator
match occurs. A separate set of switches is provided for each of the 64 comparators so that the
actions resulting from a comparator match may be separately selected for each of the up to 64
possible Boolean conditions being monitored. The actions which may be selected include setting
and resetting event recorders, incrementing or resetting a counter, recording a timestamp, loading
an external trace register, or sending the value stored in a trace register to the data compression
chips. An itemization of these control signals follows:

* COUNT, RESET-COUNTER, and OUTPUT-COUNTER for each of the external counters;

o COUNT and RESET-COUNTER for each of the internal counter/timers;
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9 SET and RESET for each of the event recorders;

e INC - a chip output indicating that the current counter output should be incremented. This
"virtual increment" feature was added so that any counter can be incremented and output in
the same cycle;

* LOAD - a chip output which signals that one or more external trace registers should be
loaded;

e TRACE.EXT - a chip output that causes the content of one of the external trace registers
to be sent to the data compression chips;

* DATASEL..EXT - a chip output indicating that the current values on the data wires should
be saved (used with LOAD and TRACE..EXT);

e TIMERSEL-.EXT - a chip output indicating that the current value of an external time-of-day
counter should be saved (used with LOAD and TRACE.EXT);

* COUNTSELEXT - a chip output indicating that the current value of one of the filter chip's
counters should be saved (used with LOAD and TRACE-EXT).

The lattef three signals can be used to multiplex between the three types of data streams -
monitored data wires, time-of-day, and filter chip counter values - choosing which of these streams
is sent to the data compression chips in any given cycle. The LOAD and TRACE signals allow for
the recording of past events. When the first event is seen, the filter chip issues a LOAD signal. A
TRACE signal is issued only if a specified second event occurs at some point in the future.

In addition to the comparators and switches, there are eight event recorders, which are imple-
mented as simple S-R flip-flops. An event recorder is used to record the occurrence of some Boolean
condition on the monitored wires. This is accomplished by programming the switches such that
when a comparator match occurs, a switch associated with that comparator issues a SET signal
to a particular event recorder. The current values of all eight event recorders are cycled back to
the comparators, allowing PHM to detect events composed of several Boolean conditions, perhaps
separated by time. This is equivalent to a set of parallel state machines for the up to 456 states.

There are two sets of counters on the filter chip. One set consists of two eight-bit internal
counter/timers, the outputs of which, as with the event recorders, are circulated back as additional
inputs to the comparators. Using these additional inputs, the number of times a Boolean condition
occurs or the number of cycles between two Boolean conditions can be included in the event
definitions which are programmed into the comparators. The other set of counters on the filter
chip is composed of eight 32-bit external counters. We call these counters "external" because their
outputs are chip outputs which may be saved, compressed, and stored by the monitor. This is in
contrast to the "internal" counter/timers described above, whose outputs are used internal to the
chip, but are not seen outside the chip. As with the comparators, area and timing considerations
were of primary importance in choosing the number and width of the two sets of counters. The
constraint on the number of external counters derives from the necessity of providing three switches
per comparator (to produce the COUNT, RESET-COUNTER, and OUTPUTCOUNTER control
signals) for each additional counter. Because of the width of the comparators and switches, there
is very little extra space in the horizontal dimension on the chip.
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The filter chip is a pipelined architecture. Because our target cycle time is 50 ns, two full
cycles are required to fully process each word of incoming data (see section 3.2). The counters,
however, are slow. They are not updated to reflect their new state, resulting from the detection of
any programmed event, until two cycles after the occurrence of that event. Since the comparator
pipe-stage processes a new word of incoming data every cycle, it cannot wait two cycles for the
counters. To get around this problem, the COUNT and RESET control signals, in addition to
being sent to the internal counter/timers, are circulated back to the comparators from the switch
outputs. These signals, in conjunction with the old counter/timer values, act as a substitute in the
comparison phase for the as yet unavailable updated counter/timer values.

Included on the filter chip is a logic block which produces a code used to identify which com-
parators matched on any given cycle. Because of chip area and pin limitations, this logic does not
produce a unique code for every possible combination of comparators. Rather, the code produced
is a simple 6-bit pattern which is the logical OR of the comparator numbers of those comparators
which generate a match. Since more than one comparator may generate a match in some cycles,
we have added a 1 bit code enable register (CER) for each comparator. Only if the CER has been
programmed to 1 will a match from the corresponding comparator cause that comparator's code to
be OR-ed into the output code. It is the programmer's responsibility to make use of the CERs and
manage the placement of conditions in comparators such that the comparator codes, when OR-ed
together, are meaningful. While this solution is far from optimal, both because of the potential for
code conflicts and because of the added programming complexity, we feel that the large number of
comparator placement options available to the programmer make this tradeoff for space reasonable.

The programming logic, the last of the major functional blocks which make up the filter chip, is

a distributed entity composed primarily of decoders. Twelve pins are used to control programming
of the chip. This is in addition to the 32 data input pins which provide the data to be programmed
into the chip (comparator keys and masks, switch masks, and CER values). The monitor board
will include bus interface logic so that it can be programmed from a personal computer.

3.2 Timing

The filter chip was designed to accommodate a 50 ns cycle time, i.e. the monitored wires may
be sampled and processed every 50 ns. To achieve this throughput rate, we employ a two-cycle
pipelined architecture, using precharge logic between evaluation phases of a two-phase (phil, phi2)
non-overlapping clock. In addition to the two processing cycles, an initial set-up cycle is required
to synchronize the input with the operation of the chip.

Figure 1 illustrates the timing of the flow of a word of data through the chip. For clarity in the
following discussion, we will use cO to refer to the cycle each word spends at the set-up latch, cl to
refer to the cycle spent at the comparators and switches, and c2 to refer to the cycle spent at the
counters, event-recorders, etc.

At cl.phil inputs are passed from the set-up latch to the comparators, along with the values
of the event recorders, internal counter/timers, and the four counter/timer control signals. The
comparators evaluate and the comparator match line outputs are passed t- the switches at cl.phi2.
These values are compared with the mask bits programmed into the switches to determine which
control signals should be asserted if a match occurs. Also at cl.phi2, the comparator match values
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are passed to the ID code generation block, where a code is generated indicating which comparators
matched the input.

The ID code is latched into an ID register at c2.phil, and is held there for output from the filter
chip at c2.phi2. The switch outputs that control the external counters, internal counter/timers, and
event recorders are also available at c2.phil, as well as the LOAD.EXT, DATASEL.EXT, COUN-
TERSEL..EXT, and TIMERSEL.EXT signals, that control the external trace registers. These
latter signals are immediately output from the filter chip. Pass gates are added between the in-
ternal counter/timers and the comparators to ensure that the updating of the counter/timers does
not interfere with the evaluation of the comparators. The counters are all given the full cycle c2
to evaluate. The other switch outputs, the TRACE.EXT and INC..EXT signals, are gated into
buffers at c2.phil and held for output on the next clock phase (c2.phi2). The use of INC..EXT will
be explained in the next section. As an example of the use of the external trace register control
signals, if we wish to determine the time between an event A and another event B, we simply assert
LOAD.EXT and TIMERSELEXT when A is seen, and then again when B is seen. The difference
between these times can be determined by software.

At c2.phi2, the filter chip outputs which are available are the signals TRACE-EXT and INC.EXT,
the ID code, and any counter value which is to be traced. In addition, if any of the counters over-
flows, an OVERFLOW signal is output. No assumptions are made about how overflows are to be
handled. In particular, the chip will continue to operate after an overflow, as if no overflow has
occurred.

3.3 More Design Decisions

We were not able to find a way for the hardware to guarantee that no more than one external
counter value would be output in a given cycle without using a lot of slow circuitry. We made
the decision, therefore, that this guarantee must be made by the programming software. If more
than one counter value needs to be output following some particular event, this can be handled by
using different comparators and event recorders to sequence through the counters, outputting one
at each cycle, e.g.

if (ER i is set) then
output counter2 and set ER2

if (ER1 and ER2 are set) then
output counter5 and set ER3

(Setting ER1 indicates that it is time to output the counters.)

Resetting the counters is handled in the following manner: Instead of resetting a counter when
its value is output, counters are "virtually reset" at the time when they are next used. This is
accomplished by redefining the COUNT and RESET-COUNTER signals to COUNTYAST-ONE
and LOAD-ONE. The first time an event is seen which we want to count, we assert the LOAD-ONE
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signal, which causes the counter to be reset to 1. Thus, we are resetting and counting to one in one
operation. After the first time an event is seen, all subsequent occurrences of the event cause the
COUNTPAST.ONE signal to be asserted, which is a regular increment signal. Thus the "reset" of
a counter never occurs while that counter is being output. The cost is that one extra comparator
is required each time a new event is to be counted. Instead of using one comparator to count every
time an event is seen, we have one comparator to count the first time an event is seen, and one
comparator to count all subsequent occurrences of that event.

In order to handle the case where we want to increment a counter and output its incremented
value during the same cycle (for example, if we are counting the number of times instruction A is
seen in 10 clock cycles, and we see instruction A on the 10th cycle), we have an extra switch output
signal called INC-EXT. INC..EXT dces not change the counter value. Instead, this signal is sent
out of the chip along with the unincremented counter value, and the "virtual incrementing" can be
handled by software.

The filter chip layout is very tightly packed in the horizontal dimension. It is the width of the
comparator and switch blocks which takes up most of this horizontal real estate. To try to alleviate
some of the crowding, we considered a design involving two sets of switch cells. Inputs to the first
set would be the comparator outputs; the outputs would be inputs to the other set of switches. The
second set would generate as outputs the control signals for the counters, ERs, etc. This second
set would be oriented perpendicular to the first set of switches and the comparators. Thus, using
this design, we could have decreased the width of the chip, since fewer switch cells would have been
required in the horizontal dimension. The amount of parallel activity (setting counters, ERs, etc.)
that could be performed on each cycle is somewhat decreased in this design, subject to the width of
the first set of switches. We did not adopt this architecture because adding a second set of switch
cells would have added at least another 1/2 cycle to the datapath. Even with our internal feedback
scheme, we would not have-been able to process one input per cycle. A possible compromise might
be to use two sets -of switch cells only in cases where the control signals generated are not on the
critical path, for example for the external counters. The tradeoff would be a little added complexity
in return for-a savings in horizontal-real estate.

4 Layout

A great deal of the layout for the filter chip has already been done. The basic cells for the com-
parators, switches, counters, code generator, and event recorders have baen completed. To reduce
the amount of signal routing needed for the final chip, many of the cells were pitch-matched so
that the connections between blocks could be made by abutment. In some cases, special cells called
glue cells were constructed to make the various blocks fit together cleanly. Also, extensive use of
precharge logic was made to reduce the number of logic gates needed for the chip, saving both
space and time. The current size of the main block (which consists of the comparators, switches,
programming decoders, and code generator) is 7200 microns wide by 3400 microns high. The main
leaf cells in this block were designed under the supposition that the height would be the limiting
factor in the chip layout; therefore, the cells were constructed to minimize height at the expense of
width. Unfortunately, the supposition was wrong, leading to a layout constrained in the horizontal
direction. The size given for the main block does not include space for the counters, the event
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recorders, or any routing that will need to be done. Simulations run on the leaf cells indicate that
the goal of accommodating a 50 ns cycle time can be met. In the following sections a brief overview
of each cell is presented.

4.1 Comparator Cell

Because of the large number of comparator cells called for by the architecture of the filter chip,
minimizing the area of the comparator leaf cell was critical to our design. In addition, the com-
parison operation had to be fast to meet our overall goal of a 50 ns cycle time. To save space,
precharge logic was used for the comparator match lines. By using precharge, we were able to use
wired-AND logic for the rows of comparator cells, saving the space and delay that it would take
to compute a 60 input AND function using logic gates. Once the key and mask registers in the
comparator cell have been loaded, the match line is precharged during one phase of a two phase
non-overlapping clock. During the second phase of the clock, the match line is conditionally pulled
low, depending on the the value of the data input and the values of the comparator's key and mask
registers. To reduce the time required to complete a comparison operation, and to achieve a more
straightforward design, the block of 60 comparators was split into a block of 32 comparators whose
inputs come from off-chip, and a bank of 28 comparators whose inputs come from the counters and
event recorders. The match line was split between the two banks, making it necessary to AND the
value of the two match lines to get the final result of the comparison. The reduced capacitances
of the two shorter match line significantly reduced the worst case performance of the design. In
the worst case, with only a single comparator cell pulling down a match line in a row of thirty-two
comparator cells, the comparison operation requires 24 ns.

4.2 Switch Cell

The switch cell was laid out so that connections with comparator cells could be made by horizontal
abutment. To save space, the switch cell is also pre-charged. The pre-charge is performed during
the second phase of the two phase clock, and the switch cell evaluates on the first phase. The result
of the comparison operation is generated during one active phase of the two-phase clock, and is to
be used by the switches during the other active phase of the clock.

4.3 Counter

All of the counters in the filter chip are synchronous with a reset capability. To implement reset and
count in one cycle, the counter was designed to reset to a value of 1, thus effecting a simultaneous
reset and count.

4.4 Miscellaneous Cells

The remaining cells that have been constructed are uninteresting. The event recorders are simple S-
R latches consisting of cross-coupled NOR gates. Other layout which has been completed includes
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the code generator cell, which is quite similar to the switch cell, decoders for programming the
switches and comparators, and a multiplexor.

5 Current Status and Future Work

Though the leaf cell design and assembly of the main block are largely complete, much work remains
to be done. The counters and event recorders have not been placed. Some of the layout for the
glue logic, which will be needed to connect functional blocks, has not been completed. And finally,
global routing and pin assignment have yet to be done. In addition, much simulation will need to be
done as the layout is assembled to ensure that the chip meets functional and timing specifications.

In addition to the final assembly work that needs to be completed, two softwz.re tools need to be
written to make the job of using the chip easier. The first tool would aid in the task of programming
the chip. Instead of programming the chip by hand, a user would write a specification of what
events she would like to monitor in a special purpose language. A translator would then translate
the user's specifications into the proper data file necessary to program the chip. The translator will
hide any idiosyncrasies in the design, such as the requirement that the output code uniquely identify
a single comparator row. In addition to the programming software, an output post-processor is
needed to tr anslate the raw output data from the monitor into data that is more suitable for human
consumption.
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Notes: - Match line must be precharged during phi2.
- During precharging, both DATA and DATA- must be 0 Volts.

- The comparator cell is 48h x 72w, taking into account shared power and gnd.

Name: CS 568
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Register Cell

REG IN,

SLOAD
OUT

IN OAD

UT

Notes: - The pass gate must be large enough to overpower the
lower inverter. This is especially crucial when writing
a 'i', since it is passed through an nmos pass gate.

- The inverter thresholds are adjusted to help alleviate
the difficulty in writing a '1'. The upper inverter has
a low threshold so a 'I' may be written easily. The lower
inverter has a high threshold so that it will output weak
'0's and allow 'l's to be more easily written over it's

output.
- Load times are in the 3-4ns range. This assumes approx.

4.5V on the LOAD line and a good (within .5V of 0 or 5V)
value on the IN line.

- The register comes in two flavors:
- 32h x 30w (not including power and gnd). This is

used in all applications except the ROM IDlatch.
- 79h x 20w (including power and gnd). This is used

for the ROM IDlatch, which needs to be skinny.

Name: cS 9R
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Comparator Data Logic Cell

,DATAIN
'PH12 i

Daza~ogic

DATA
DATA-

ATAIN

H112

These inverters are sized
to drive the large
capacitance of the data
lines.

ATA 
AT

A-

Notes: - This cell gates the data signals going into a single
column of comparators. Its purpose is to ensure that
the data and data- lines are always zero during
the match line prechargin4 on phi2.

- The cell is pitch-matched to the top of the comparator
cell (72w) and is 107h.

Name: rs 56R
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SWITCH CELL

SWci] (j]
Mask
'Load
Data ControlL'
'Phil
'Phi2

i = 50:1
j = 64:1

Signals:

Mask <-- DMUX <-- DATAIN pins (phil)
Load <-- LSW DEC or RSW DEC <-- DEC(phil)
Data <-- COMP (phi2)

Control ==CT-countL~k), CT-resetL~k] -- > CT(k](phil)
-- > MUX -- > COMPs (phil)

-CNT countL~k], CNT-resetLfkJ, CNT enoutLtk) -- > CNT(kJ (ph:.
-=ER~sseLskJ, ER-resetL~k) -- > ER~k) (phil)
-INC extL -- > buffer -- > INC output pin (phil)
-LOAD -extL ->LOAD output pin (phil)
TRACE-extL ->buffer -- > TRACE output pin (phil)

-DATASEL extL ->buffer ->DATASEL output pin (phil)
-TIMERSEI-extL -- >buffer ->TIMERSEL output pin (phil)
-COUNTERSEL-extL -- > bufffer -- > COUNTERSEL output pin (phi

Operations:

Normal operation:

oad Mask MR Data ControlL (assert low)_

1 x x x Load MR (See next table)
0 X 0 0 1

CS 568 Project: Trace Filter Design



SWITCH CELL

Load MR operation:

oad Mask Data MR

0 x x normal operation
1 0 x 0
1 1 X 1

Size:

Height: same as COMP cells.

Implemention:

---phil Mask

Data

Load rM

phi2

phil

ControlL

K Name: CS 568
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Swit ch

LOAD SWITCH (bank i-
ROW SELECT(iI-
M'ASK~jI
'PH12KhTCH(i)
PH11-
PH12
CONTROL(JI

switch

LOAD SWITCH (bank] - Vdd!j]

ROW S LECTri1- 

L LA

ONTROL(j]

Notes: -PH12MATCH must be low during precharging (phil).
-Control line is latched in on phi2, available on phil.
-The precharge and latch logic are shared for each control line.
-The row select logic is shared for each row of comparators

in the same bank.
-Puildown time for a 64-tall switch is approx. l3ns.

Name: r~ !;S
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EVENT RECORDER

i = 8:1

ER(i]
S-L

R-L Q

phi2

Signals:

S_-L <-- ER setL[iJ (during phi2)
R L <-- ER~resetL~iJ (during phi2)

-- > mux -- > COMP

Operations:

S-L R-L Q
1 1 Q(t-l)

1 0 0
0 1 1
0 0 x

Size:

Width: same as COMP cell

CS 568 Project: Trace Filter Design



Event Recorder Cell
(S-R Latch)L: i

Notes: - The event recorder cell is a simple set-reset latch.
- The cell is 34h x 35w.

Name: Sf56
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INTERNAL COUNTER/TIMER

i - 2:1

in[8:l] CT [iJ

countL

resetL out C8: 1]

phil

phi2

Signals:

in <-- hardwired 1
countL <-- CT countL[i] from SW (phil)
resetL <-- CT-resetL(ij from SW (phil)
out -- > MUX -M> COMP (phi2)

operations:

If resetL then
out := in

else
if countL then

increment( start at phil; finished before the end
of phi2

Size:

Width: same as COMP cell

C S 568 Project: Trace Filter Design



COUNTER
i - 8:1

CNT (i]
countL
resetL cntout [24 : 1]
enoutL

phil overflow
phi2

Signals:

countL <-- CNTcountLi] from SW (phil)
resetL <-- CNT.resetL[i] from SW (phil)
enoutL <-- CNT enoutL(i] from SW (phil)
cntout(24:1] -:> CNTOUT[24:l] output pins (phi2)
overflow -- > OVERFLOW Circuit (phil)

Operations:

If resetL == 1 then
cntout := initial pattern

else if countL == 1 then
cntout := next pattern

else if enoutL == 1 then
output cntout

If cntout == MAX pattern then
if countL(t+l) == 1 then

overflow : 1

Implementation:

[shift register

MAX combinational logic
pattern

overflow circuit overflow

Name: CS 568
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OVERFLOW CIRCUIT
i 8:1

Ov (i]
cntout[24:1)

countL

resstL overflow
phil

phi2

cou IntL

ttoverflow

cnte 
n cn o t out: <-- c t t fr m NT i (phil )

countL~~~~~~ <- 
N~ o n L i 

r m phi 
l)

reehi-OT~eeLi ro W(hl
oveflo & OR gat of overflowsinlfrmCT8J

-- > V ouput in phi2

befores restL)the

overflow :=~at ofoefo inl1rmCT81

Name: CS 568
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Counter Cell

RESET Ctrl 0
PHI1PH12

PH12-
Cin Cout

PHII Q HI2-

Xora

Vdd

a

RESE RESET

Cmcinx 
c

a Xo r

Note - The Cout to Carry-in signals are made through abutment.
The RESET signal sets this bit of the counter to zero.
The RESET signal is asserted low.
This cell is pitch-matched to the comparator cell. Its
dimensions are 77h X 72w.

Name: rs 56A
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ID Code
ID Code (i]

WDSEL
LD ID

EN

phi2

DSELCER ID CELL [i] [1] ID CELL (i](2] ID CELL (i]16]

-- LD . .E D  -SEL ID' SEL ID- -SEL ID-
_1%NID

10(13 ID(2) ID[6]

Signals:

LD <-- RSW DEC <-- DEC (phil)
EN <-- DMUX
WDSEL <-- COMP match (phi2)
ID --> IDL (phil)

Operations:

if LD then CER := EN
else if WDSEL = CER = 1 then

ENID := 1
else

EN ID := 0

Implementation:

The CER (code enable register) can make use of the switch cell.

CER
WDSEL -->'Data

LD -- Load ControlL -__> EN ID

EN -->AMask

Name: CS 568
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ID Code Cell

ID Cell (i) (j]

SEL ID

i = 64:1
j = 6:1

Signals:

SEL <-- ENID from CER (during phi2)
ID --> IDL latch --> COMPID output (phil)

Operations:

if SEL = 1 then
ID = hardwired pattern

Constraint:

There maybe more than one ID cells fired at the same time,
The CER will generate a SEL signal only if the code
should be output. The IDER (ID Code enable register) should be
programmed so that no more than one code will be output
simultaneously.

Size:

Height: same as COMP cells.

Name: CS 568
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LOAD ID- ID Word
ENABLE

?HI2MATCH [i]

IOWSELECT(i]

H!i ID[10]

P12 I0M GND GND GND GND GND GND
ID(2]
ID(3]
ID(4] PH!
ID[5]

LOAD ROM" ENABLE

PHT2MATrCHril __SE_____

ROW SELECTil -N - IL -E

P H 2 

F I r
H c- H HH HH H

0E (ANWN[

0 0

6[0IID(1]
D(33

Notes: This drawing represents a single code word (110110).
-ID lines are predischarged on PHIl and evaluated on PH12.
PH12MATCH(i] is the match line from comparatori].

-Each code bit cell (pullup transistor) is pitch-matched to
the comparator (48h) and is 12w. The 6-bit code word is
129w, including the cer.

Name: CS 568
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Code Enable Register

WDSEL
LD CER
EN

ENID-

EN

REG IN-
LD LOAD

OUT EN ID-

WDSEL

Notes: - The ID code enable register outputs a zero on EN ID- whenever
it has been enabled and WDSEL is high.

- The cell is pitch-matched to the side of the comparator cell
(48h) and is 55w.

Name: CS 568
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ID LATCH

IDL

datain(6:l)

phil dataout[6:1]

phi2

Signals:

datain[6:l) <-- ID from ID code logic (phil)
dataout(6:l) -- > COMPID output pins (phi2)

Operations:

load datain on phil
output on phi2

Size:

width: same as ID code cell

Name: CS 568
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DECODER

DEC
ADDR (6:l1J

LD/RUN L(41

Signals:

ADDR <-- ADDR input pins
LD/RUN <-- LD/RUN input pin

Ld -- > LSW DEC (phil)
RSW DEC (phil)

DATA COMP DEC (phil)
ERCT COMP DEC (phill

operations:

Regular 6 to 64 decoder, enabled when Ld =1

Nae: CS56CS 5 8 Projet rc itrDsg
Date: Winter Quarter, 1989



DECODER

rLSW DEC

Ld[64: 1]

SW/COMP LdLSW[64:l]

DATA/ERCT

Signals:

Ld <-0- DEC
SW/COMP (switch/comp select) <-- SW/COMP input pin
DATA/ERCT (data/ER/CT) <-- DATA/ERCT input pin
LdLSW (load left half of SWs) --> SW ldl lines (phil)

Operations:

LdLSW = (Ld = 1) * (SW/COMP = 1) * (DATA/ERCT = 1)

Name: CS 568
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DECODER

RSW DEC

Ld[64:l]

SW/COMP LdRSW[64:1]

,DATA/ERCT

Signals:

Ld <-- DEC
SW/COMP (switch/comp select) <-- SW/COMP input pin
DATA/ERCT (daF.a/ER/CT) <-- DATA/ERCT input pin
LdRSW (load right half of SWs) --> SW ldr lines (phil)

Operations:

LdRSW = (Ld = 1) * (SW/COMP = 1) * (DATA/ERCT = 0)

Name: CS 568CS 5 68 Project: Trace Filter Design
Date: Winter Quarter, 1989



DECODER

DATA COMP DEC

Ld[64:1]

Bitl/Bit2 LdDatal[64:1]

SW/COMP

DATA/ERCT LdData2[64:1]

Signals:

Ld <-- DEC
Bitl/Bit2 <-- Bitl/Bit2 pin

DATA/ERCT (select DATA or ERCT COMPs) <-- DATA/ERCT input pin
SW/COMP (switch/comp select) <-- SW/COMP input pin
LdDatal -- > COMP's load Bitl signals (phil)
LdData2 -- > COMP's load Bit2 signals (phil)

Operations:

LdDatal = (Ld = 1) * (SW/COMP = 0) * (DATA/ERCT = 1) * (Bitl/Bit2 = 1)

LdData2 = (Ld = 1) * (SW/COMP = 0) * (DATA/ERCT = 1) * (Bitl/Bit2 = 0)

6 8 rName: CS 568
C S 5 6 Project: Trace Filter Design

- Date: Winter Quarter, 1989



DECODER

ERCT COMP DEC

Ld[64:1]

Bitl/Bit2 LdERCTI[64:1]

SW/COMP
DATA/ERCT LdERCT2(64:1]

Signals:

Ld <-- DEC
Bitl/Bit2 <-- Bitl/Bit2 pin

DATA/ERCT (select DATA or ERCT COMPs) <-- DATA/ERCT input pins
SW/COMP (switch/comp select) <-- SW/DATA input pin
LdERCTl -- > ERCT COMP's load Bitl signals (phil)
LdERCT2 -- > ERCT COMP's load Bit2 signals (phil)

Operations:

LdERCT1 = (Ld = 1) * (SW/COMP = 0) * (DATA/ERCT = 0) * (Bitl/Bit2 = 1)

LdERCT2 = (Ld = 1) * (SW/COMP = 0) * (DATA/ERCT = 0) * (Bil/Bit2 = 0)

Name: CS 568

CS 568 Project: Trace Filter Design

Date: Winter Quarter, 1989



BUFFER

BUF (i]
,,DataIn

phil DataOut

phi2

Signals:

DataIn <-- DMUX <-- DATAIN pins (phi2)

DataOut --> COMP (phil)

Operations:

DataIn DataOut

0 0

Size:

Width: e-me as COMP cell

Name: CS 568

CS 568 Project: Trace Filter Design

Date: Winter Quarter 1989



MUX

HUX

inl(28:1J

in2[28:l]
out [28:l1J

sel

phil

Signals:

sel <-- LD/RTJM pin
inl <-- DMUX <-- DATA(28:l] pins

in2 <-- ER(8:lJ and CT[2:l] [8:1) and CT count(2:lJ from SW
and CT -reset(2:l] from SW (during phi2)

out -- > ER/CT COMPs (phil)

Operation:

csel 0: out :in2

sel 1 :out := m

endcase

CS 568 Project: Trace Filter Design_______



DMUX CELL

DMUX
dataout (32:1]

sel(2:1] erctoutf28:1]

datain(32:1] swout(51:27]

swout (26:1]

Signals:

Sel <-- SEL(2:1] in put pinstdatain <-- DATAIN[32:1] input pins
dataout ->BUF ->data COMPs
erctout ->MUX ->ER/CT COMPs
swout -- > SW and ID Code

Operations:

Case
sel 0 : dataout(32:1] :=datain(32:1]

sel 1 : erctout[28:1] : datain[28:1]
sel 2 : swout(51:271 datain(25:1]
sel 3 : swout(26:1J datainf26:1]

Endcase

Name: CS 568 ____________
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